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PREFACE

The research report contained herein was supported by the
Avionics Laboratory, Wright-Patterson Air Force Base, Ohio, under
Contract No. 33615-77-C-1002, "Electron Device Contact Studies."
Research described in Sections I-VI was performed at The Ohio State
University, Department of Electrical Engineering. Research covered in
Section VII was performed at The Ohio State University, Department of

Physics. This report covers a period from November 1, 1979 to June 30,
1981,

The main objective of this research program is to investigate
the fabrication of low resistance contacts to gallium arsenide (GaAs)
and to examine their behavior with respect to theoretical models. This
report covers the background theory used in the modeling of the con-

tacts and gives the processing steps developed for the fabrication of
Au-GaAs contacts.
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SECTION I
INTRODUCTION

1.1 Purpose and motivation for this research
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There has been considerable recent interest in using GaAs as the
basis for high speed electronic device applications. As with any
practical device, making reliable contacts to the operating areas of
the device is of utmost importance. An ideal contact, more
specifically an ideal ohmic contact, is one which allows current to
flow in either direction without presenting to the carriers any
resistance at the interface, If the interface is not ideal, the con-
tact can still be considered omic if the resistance is small and the
potential drop developed across the interface is essentially linear
with respect to the current,

In practice, a potential barrier is nearly always present at the
interface and presents an impediment to the current flow preventing
the contact from being ideally ohmic. Often the contact is highly
non-ohmic or rectifying as a result of a non-linear current-voltage
(I-V) characteristic. The object of contact studies is to determine
where contact non-linearities arise and how they affect contact
properties and to use that knowledge to minimize the effects of the
barrier and to reduce interface resistance to as small a value as
possibie,

As will be discussed in detail later on, contacts which present
little resistance to current through the interface are referred to as
"ohmic contacts" and whatever resistance they do have can be related to
the contact area by defining a quantity,"specific contact resistivity”,
Rc. The units are usually in Q-cm® and, for a contact of given area,
the resistance the contact presents to current flow can be easily
determined., Ideally R, is zero, but practically R is very small,
=10-6 Q-cm2, in typical contacts being made today.

The difficulty is that when most metals are applied to make a
contact to a semiconductor a potential barrier forms at the interface,
Commonly this potential barrier causes the current to be a non-linear
function of applied bLias volitage and an R can be defined only in a
piece-wise sense. The usual assumption is that ohmi¢ contacts in the
presence of such a barrier are made possible by quantum mechanical
tunneling through the barrier. In Such a case the barrier ceases to be
significant and low values of R may result.

ol
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Tunneling is initiated in a metal-semiconductor (MS) contact by
doping the semiconductor area beneath the contact to a high concentra-
tion., This high doping causes the formation of a very thin space
charge region, If the doping is high enough to reduce the space cnarge
region to a thickness of a few lattice constants, tunneling can occur.

The literature on ohmic contacts to GaAs is quite extensive and
the amount of supporting and related literature on contacts to other
semiconductors, especially Si, is even larger. Several particularly
useful reviews have been given by Rideout (1), Yoder (2), and Eckhardt
(3) with an introductory textbook-monograph having been written by
Rhoderick (4).

Research on the theory of metal-semiconductor (MS) interfaces
and their current transport characteristics is usually considered to
have begun with the work of Mott (5) and Schottky (6). The diffusion
theory of Schottky and the thermionic emission theory of Bethe (7) were
subsequently combined into the modern thermionic emission-diffusion
theory by Crowell and Sze (8). A good explanation of the essentials of
all the above can be found in Sze (9).

The above research was concerned with MS contacts in which
emission over the barrier is the dominant mechanism, Ohmic contacts,
on the other hands, are related to carriers tunneling through interface
potential barriers. A classic reference for this type of tunneling is
given by Nordheim (10) . The most extensive theoretical work on the
I-V characteristics of MS tunneling contacts is found in the papers of
Padovani and Stratton (11), Crowell and Rideout (12) and Chang and Sze
(13). Padovani (14) gives a good summary, with additions and
corrections, of the work of Padovani and Stratton., Using the above, Yu
(15) formulated the basic theoretical development of the specific
contact resistivity of tunneling MS contacts. Change, et. al. (16)
also performed a numerical analysis for R. based on Chang and Sze (13).

The initial experimental work on developing alloyed type ohmic
contacts to GaAs was performed by Cox and Strack (17). Since that
time, various "recipes" for making ohmic contacts have been examined.
The usual technique utilizes the alloying of a Au-Ge contact mixture
into the GaAs surface (18-22). The Ge is believed to move into the
GaAs surface thereby creating a highly doped region which forms a thin
space charge layer through which electrons can tunnel. Usually the
alloying is performed thermally but laser annealing and electron beam
annealing (3) are receiving much current interest. Ion implantation
has also been tried (23).

Even though alloying results in good ohmic contacts with low R,
many problems associated with alloying are present, Some arise from ¢
the non-uniform way in which the ailoying occurs (19). However, the
most serious problems arise from the redistribution of the Au, Ge, and
Ga during the alloying (21, 24-25). This redistribution can occur to




quite a large depth into the semiconductor and has severe implications
if alloying is used for contacts to the thin electronic structures
employed in advanced integrated circuits. This problem has initiated
much recent research into the possibility of making ohmic contacts via
a non-alloying approach (27-30). The research described in this report
deals in part with the possibility of fabricating a non-alloyed, low
Rc, contact to GaAs using a Sn diffusion,

One large problem with experimental research up to this point is
that beyond giving “recipes", little work has been done in trying to
determine whether the low values of Rc are in fact due to tunneling
through the barrier. There are other possibile schemes whereby low
Rc's might be obtained, especially since the alloying step can
drastically alter the morphology of the interface. Part of the problem
lies in the fact that after fabrication of a low R. contact via
alloying, the data necessary to relate contact performance, namely Rg
and current-voltage (I-V) response, to theory is difficult to obtain,
The data needed are primarily the potential barrier height, ¢g, at the
interface and the semiconductor doping, Np, beneath the contact. The
value of Np especially is almost impossible to determine after the
alloyed contact has been fabricated.

Models have been developed in which the tunneling I-V response
of MS contacts can be theoretically determined. The main thrust of
this research was to attempt to relate experimental performance of some
non-alloyed Au-GaAs contacts to those models to see whether they can
accurately predict contact behavior. If so, then contact performance
can indeed be assumed to be due to tunneling phenomena and, more im-
portantly, the use of such models in predicting contact performance
under various conditions is justified. The application of an accurate
model in the attempt to fabricate contacts that are even more ideally
otmic would allow a somewhat more scientific approach to be taken
rather than the "hit and miss recipe" approach now often used.

1.2 Fabrication procedure

In this research, since a comparison to theoretical models was
desired, the fabrication process needed to be one which allowed the
important parameters of ¢g and Np to be determ ned accurately. This
meant that the normal approach of making contacts via alloying could
not be used. The method decided upon was based on highly doping the
GaAs surface so that carrier tunneling was expected but doing so by
diffusing the dopant into the surface first and then applying the con-
tact metal. This method of fabrication was a two-step process instead
of a single step alloying but, of utmost importance, it allowed the
determination of the Np parameter before the contact was actually made,
and therefore allowed for accurate comparisons between theoretical
predictions and analysis. It was, of course, necessary that the
application of the metal should not affect the doping at depths
critical for tunneling.




The diffusion of Sn into a p-type GaAs wafer was used to create
an n-type surface layer with a high value of surface dopant
concentration, Cg, and since Cg is large, a thin space charge region is
formed and tunneling can occur., The theoretical treatment is actually
based on the assumption of uniform dopant distribution, Np, beneath the
contact, However, even though the actual dopant distribution has a
definite profile, with Cg indicating dopant concentration only at the
surface, the value of Cq can be substituted for Np in the theoretical
equations with little error. This is done in this research, but both
Cs and Np symbols will still be used since it is desirable at times to
keep clear the designation between actual dopant profile and theoret-
ical assumption,

The choice of a p-type substrate was based on the desire to form
a thin, isolated layer for conduction, allowing easy determination of
the data needed to calculate Cs and Rg.

1.3 Data collection and interpretation

To determine the value of Cg for the diffused layer, a van der
Pauw measurement was performed and a value of diffused layer sheet
resistivity was obtained. Junction lapping and staining was then used
to determine layer thickness. From the above data a value of average
resistivity for the layer, p, could be determined., An "Irvin curve", a
theoretical curve relating o of the diffused n-type layer to the value
of Cg, was developed and used with the measured o to determine an
experimental value for Cg.

To develop the value of ¢g, curve fitting of experimental
contact I-V data to theoretical equations for the contact I[-V response
was performed. The curve fitting yeilds both ¢g and Cg parameters and
allowed a check on the value of Cg as determined from the o measure-
ments.,

Using the values of ¢g and Cg as obtained above, theoretical
values of R. were calculated. As a more complete check on the applic-
ability of the model, the variation of R. with temperature was
predicted theoretically and then compared to experimental Rc vs. T
data.

The above model and procedures were also applied to the analysis
of annealed-alloyed Au-Sn diffused lTayer contacts and also to annealed-
alloyed Au-Ge contacts., Values of ¢g and Cs were calculated and
compared as a function of annealing time and temperature. This part of
the research program was performed to see whether the model used in the
analysis of non-alloyed contacts could also be usefully applied to
understanding what changes alloyed contacts undergo as they are
fabricated and why these changes result in the contact eventually
exhibiting improved ohmic behavior.
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SECTION II
THEORETICAL BACKGROUND

2.1 Ohmic contacts

A discussion of contact performance and ohmic contacts must
first clarify the meaning of the word "ohmic", To define the term it
is necessary to consider the structure of the metal-semiconductor (MS)
interface.

The joining of a metal and a semiconductor causes the formation
of a potential barrier at the interface. Figure 2.1 shows the band
diagram of a MS contact on a moderately doped semiconductor., This type
of barrier is commonly referred to as a Schottky barrier. In the
figure, E. and E, represent semiconductor conduction and valence bands,
respectively., The Fermi level energy is Efp. The potential barrier
height is given by ¢g and the space charge region width is W.

Classically ¢pg is determined from:

@B = oM - XS ’ (2.1)

where ¢y is the metal work function and Xg is the electron affinity of
the semiconductor (63). If ¢m > ¢5, where ¢5 is the semiconductor work
function, the barrier of Fig. 2.1 results, This type of barrier
presents an impediment to current flow and even for relatively low
values of current, rather large voltage drops appear across the
interface. If, at this point, a piecewise linear approximation of the
contact 1-V response is made, these large voltage crops result in a
Jarge contact resistance,

If oM < ¢35, ¢g can become zero or even negative., For such a
case the carriers crossing the junction see essentially no resistance
since no barrier exists. Therefore, the potential drop across the
junction is very small, ideally gning to zero. Such a contact has zero
contact resistance and is the classical definition of an “ohmic"
contact., (For the above discussion, a MS contact to an n-type
semiconductor was illustrated. For a p-type semiconductor similar
barriers to hole flow will result but for the opposite conditions of
¢M and ¢5. Since that treatment is analogous, and since n-type samples
were used in this research, only n-type examples will be discussed
further,)
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Figure 2.1 Schottky barrier contact on a
moderately doped, n-type
semiconductor




For device fabrication, the most desirable contacts are ohmic
contacts as the word is defined above. However, for most practical
combinations of metals and semiconductors the ¢M, Xg relation is in a
direction to produce a barrier. Moreover, other effects such as
surface states act to pin the Fermi level at a fixed position resuiting
in a ¢g independent of ¢m or Xg (31-35). For such cases the formation
of a Schottky barrier is inevitable. However, ohmic contacts can still
result from other conduction mechanisms, but the word “"ohmic" takes on
a slightly different meaning.

In the most general case of contacts to devices, the goal is to
have the voltage drop across the contact interface much smaller than
the voltage drop across the bulk region of the device. In this way the
contact properties or contact [-V response do not affect overall device
performance. In addition, the I-V response of the contact should be
essentially resistive or linear. However, the description of “ohmic"
now becomes a relative one, being compared to the bulk resistance of
the device itself, This viewpoint is useful and for many practical
contacts is perfectly valid in characterizing them as being ohmic.

2,2 Contact resistivity

A more quantitative way to describe contact performance as it
relates to omicity is in terms of contact resistivity, Rc, which is
usually given in units of Q-cm?, The definition of R; implies that the
effects of the contact interface on carrier flow can be lumped into a
distributed resistance. If the 1.V response of the interface is fairly
linear, the value of R, is applicable over a wide range of contact
voltage drops. If the I-V response is non-linear, then the R value is
strictly applicable at only one particular value of I and V. In most
cases, the value of R. is fairly low, making the voltages drop across
the contact smalil, and typical contact I-V response over this region of
voltage drops is fairly linear.

Lower values of R are, of course, desirable. When contact
current flow is perpendicular to the interface, the actual resistance
of a contact of given area, A, can be determined from:

Re
RCONT = o . (2.2)

The voltage drop across the contact can then be calculated from:
VCONT = IRcoNT . (2.3)

For current flow in a planar contact, or other structure where current
flow is not all perpendicular to the interface, equation (2.3) usually
cannot be applied directly. In such cases current crowding effects are
present and a different method must be used to relate the value of
VCONT to the values of I and Rc (36-37). However, even in such cases
the concept of R¢ is valid and is the best way to characterize contact
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performance at the interface level. Therefore, in current
termminology, “onhmic" contacts refers to contacts with sufficiently
small R values. Values of Re in the range ofl10-3g-cm? to 107902 are
those most often referred to in the literature as being ohmic (17-23,
27-31).

2.3 Practical ohmic contacts

In section 2.1 it was stated that for most cases of MS contacts
a positive ¢g will be formed. For Au-n-type GaAs contacts, other
workers have measured a ¢g in the range of 0.8 to 1.0 eV, with 0.9 eV
being the value most often reported (31-35). The value of ¢g is usual-
ly observed to be constant and independent of GaAs doping level
implying that the Fermi level is pinned due to the action of surface
states.

A simple model explaining Fermi level pinning as being due to
surface states has been developed by Bardeen (38). There is still some
question as to whether the surface states are intrinsic or whether they
are induced by the deposition of the contact metal bhut, the important
point is that when an Au contact is made to GaAs a Schottky barrier
with ¢g = 0.9 eV can be expected. Subsequently, such a barrier will
result in a poor contact unless it is thin enough to allow carrier
tunneling.

For a MS contact with a barrier height ¢g , the width of the
insulating space charge layer beneath the contact is given by:

- - 172
o By - A : (2.4)
aNp q
where ¢ = semiconductor permittivity = ecpeq
g = electronic charge
Np = semiconductor donor density
k =  Boltzmann's constant
T = temperature
Vi = built in voltage (barrier height as seen by electrons
in conduction band of the semiconductor)
Vbi = ¢B * nF
ng = Fermi potential = Ef - E¢
or if ng >>nf , —%I as is the usual case,
10
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W o= AT (¢g) . (2.5)

f— —

For moderate dopings, W is too large to allow electrons to
tunnel and any flow must be over the barrier. Such a contact exhibits
rectification and the I-V response of the contact is given by the
familiar diode equation:

- - 1/2
¢8 qVv
J = Aexp (- —) exp (—— ) -1 , (2.6)
kT kT
where )
A = Richardson's constant = Ammt(kT)® (2.7)
h3
h = Plank's constant
m* = electron effective mass

For contacts with a given I-V response, the value of specific
contact resistivity Rc is defined, in the limit as contact voltage goes
to zero, as:
av
ddJd

Re = (2.8)

v+0

or equivalent, since the [-V response is single valued in J for all V,

RC = — (2.9)
v+0

Applying the definition of R, to the diode equation, applicable for
semiconductors with moderate doping, results in values for Rc on the
order of kilo-ohms-cm?., The incremental resistance is, of course, in
parallel with a depletion layer capacitance and the result is clearly
not a useful contact characteristic,

However, if the doping, Np , is large, the band diagram as seen
in Figure 2.2 is present. The barrier slope is quite steep and W is
very small. For values of W on the order of a few lattice spacings,
electrons can guantum mechanically tunnel through the barrier under an
applied voltage and give rise to a current. The tunneling currents can
be quite large even for a small contact voltage drop and therefore the
resistance of the contact can be quite low.
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Theoretical equations giving the I-V response of tunneling
contacts have been developed by various authors such as Padovani and
Stratton (11), Crowell and Rideout (12), and Change and Sze (13). Their
results are all similar, but the work of Chang and Sze is based on a
computer numerical solution, using Schroedinger's equation, with the
least number of simplifying assumptions. Subsequently, Chang and Sze's
results are not given in a closed analytical form and therefore, a
closed expression for R. cannot readily be developed from their graphs.
[t is easier to work from the results of Padovani and Stratton or
Crowell and Rideout where [-V equations are given, The most compre-
hensive treatment of tunneling, outlining the development of the
tunneling [-V equations, is given in Padovani (14). Here Padovani has
taken the earlier work of himself and Stratton (l1), as well as
Stratton (39), and presented a more unified development. It is largely
from this cource that the equations used in this research are taken and
the development of these equations is reviewed herein,

2.4 General aspects of tunneling

The basis for the Development of the [-V response of a tunneling
contact results on relating current flow to the probability of electron
transmission through a thin potential barrier. The classic work of
Nordheim (10) gives an expression:

2(¢g-qV-ng)
P = exp |~ —mm——— . (2.10)
3Es

where P represents the transmission probability for an electron
through a triangular potential barrier of total height ¢g-qV-nf.
Where:

v
nf

applied basis voltage
Fermi level referred to E.

The term E, represents a characteristic tunneling energy and is given
by:
- Yz
Np
fo = ﬂﬁ — s (2.11)

2 em*

where ‘

Plank's constant /2=

Semiconductor doping

Semiconductor permittivity

effective mass of the carrier (in this case an electron).

=
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The tunneling current is proportional, in first order, to P and
therefore has an exponential dependence on applied forward voltage. The
energy Es can be easily shown to be inversely proportional to the space
charge width, W, A decrease in W, meaning a thinner barrier and
increased probability for tunneling, results in a larger value for E,
which via the above also leads to a larger value of P, An increase in
Np results in a thinner space charge region, and as is obvious from Eq.
(2.11) also increases E,. Also, since the electron effective mass, m*,
for an etectron in GaAs is very small,

e e e

[P

m* = 0.068 m, .
where (2.12) %
mg = 9.1 x 10-31! kg , i
the value for E, in GaAs is much larger than for other semiconductors j

where m* is larger, and therefore, for similar doping levels, electron
tunneling is much more probable for barriers made to GaAs. This is why
tunneling is believed to be the main mechanism giving rise to low
resistance contacts to GaAs.

Even though a Schottky barrier can be approximated to first order ]
as a triangular barrier, the actual relationship between electron
tunneling and current flow is much more complex. The reason is that the
electrons are distributed in a range of states throughout the conduction
band and the contribution of all the electrons must be considered. The
relationship between electron tunneling probability and current flow in +
the x direction is given by:

29 -
J = ;; oj Fl(El) - Fz(Ex) J P(El, Pys PZ)dPy dpP, dE1

(2.13) !

The subscripts 1 and 2 refer to the conductors where the electrons
originate and where they are destined respectively., For a MS contact
with an n-type semiconductor under forward bias, “1" represents the
semiconductor and "2" represents the metal, The Fy(Ey) and Fp(Ey) are
Fermi functions, predicting whether or not an electron state at energy
E) is occupied. The transmission probability is P(E;, Py» pz) and the
integration is performed over all energies and momenta in the conduction
band.

One large problem in using the above equation lies with the
formulation of P for a given barrier shape. For any specific barrier
shape, an analytical solution of Eq. (2.13) using an extraction
expression for P is extremely difficult, Instead, P is usually formu-
Tated using the WKB approximation which results in:

X2 1/2
XS (002172 a4
X1

14
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The value of py is the x component of electron quasi-momentun in the
space charge region. For a total monentum of p? = py? + py? + p,2, the
transmission of electrons in the x direction is dependent on p,. Let-
ting py2 = py? + pz? , Eq. (2.14) can then be rewritten as:

o X212
P = exp - Z ] (pgé-p?) dy . (2.15)
X1

The minus sign in -(py)% in Eq. (2.14) arises from the WKB approximation
because between xj and xp, the classical barrier turning points where

px = 0, the value of py? is <0 since the electron is within a potential
barrier ¢(x), whose energy is larger than that of the tunneling elec-
tron.

One large analytical difficulty remains. The expression for 1nP,
Eq. (2.15), is stil) difficult to use, as is, in £q. (2.13). The
simplification used to overcome this problen is to expand InP into a
Taylor series. This procedure has been done by Stratton et.al. (40),
and results in a series for an expansion in (p;)? of

(P.)?

2
pOl

sinP = b+

+ K(py)? (2.16)

with the coefficients b and P01 defined as:

b = 2 [ pdy (2.17)
h

1 1
POIZ H - ‘( - dX ’ (2.18)
h p

where p = -p? éagain since within the barrier region pZ < 0). Since
termms above p;¢ will not be used, K need not be given.

The further simplification of Eq. (2.16) involves expanding b
into a Taylor series around the energy level from which the electrons
are tunneling. This will result in two different regions of operation,
field emission (FE) and thermionic field emission (TFE) which will be
treated separately in the following sections.

2.5 Field emission

In the case of field emission, the electrons tunnel from states
around the semiconductor Fermi level, np, as shown in Figure 2.3. The
applied forward bias is V and ¢(x) is the potential barrier.

15




4
¢ (x)

\/“ .
Py

e —rgom oo 7/1' *;> — |

4 "V EMISSICN
e 4 ___.c'.._:".__..,l..__gm

METAL

SEMICONDUCTOR

Figure 2.3 Electron tunneling under field emission for an

applied forward bias.




Since electrons are tunneling around nf, the simplification for
Eq. (2.16) is to expand b in terms of a Taylor series around the Fermi
level (40). The series is given by:

b = by +cp(E-np) + f{Enp)? + er (2.19)

where the coefficients b, ¢, and fy are given by:

X2

- i . 2 =
by = b lnF- ® XII (p)nF dy (2.20)
2 X2 dp
¢y = [ (=)Ing . (2.21)
X1 d
1 X2 d2‘
f1 = 7 (e & (2.22)
X1 dE?
and
X2
L Y N e (2.23)
p 2 X
01 1 P

where all integrals are evaluated at E = np. Substitution of the
coefficients into Eq. (2.19) and use of Eq. (2.19) in Eq. (2.16) and
then in Eq. (2.13) for J gives:

J = gi% (Py,)2exp(-b1) [~ [F1(E)-F2(E)] exp [-c1(E-nf)] dE

1 2n _-Py?
x [1- 5= of exp (;;‘7;) dp] (2.24)
01

which is valid as long as (42)

1

(2.25)

The next step in the analysis is to choose the appropriate
relationship between momentum, p, and energy, E, so the coefficients can
be evaluated. The assumption used here is that of a parabolic eneryy-
momentum relationship in all directions given by:

p2 = 2m*(E-nf) . (2.26)

17




For electrons tunneling through a barrier, o¢(x), £q. {(2.26) becomes:

p2 = 2m*(E-nf-¢) (2.27)
and within the barrier (space charge layer) E > np but E<p , there-
fore using p=2 = -p? as the quasi momentum in the barrier:

p¢ = 2m*[o-(E-nf)] (2.28)

It is from Eq. (2.28) that the coefficients pgy, by, ¢y, and f| are
determined. The ¢ term also includes a dependence on applied bias V.

Padovani (14) states that with the assumption of a parabolic
energy-momentum relationship and with the assumption that m* can be
used to describe the electron while it is tunneling through the
barrier, for most values of applied voltage, energy levels, and barrier
heights:

Pm?
_ = CE . (2.29)

2
POl

This relationship, if applied in Eq. (2.24), results in:

A mc kT

J = — exp(-by) {—————— [1-exp (-c1qV)] - c1qVexp(cnf)}

(c1kT)? sin(ncq1kT)

(2.30)
valid when:
(nf-qV)
exp —_ > > 1 . (2.31)
kT

The previous Eq. (2.7) gives the value of the Richardson constant.

As seen from Eq. (2.31), the above expression for J is valid
only for the case of small applied biases, and is somewhat less valid
at room temperature (higher kT) than for lower tenmperatures where
tunneling conduction is usually-considered to be dominant,

If

(nF-aqv)
exp —_— <K (2.32)
kT
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as would be the case for laryer forward biases, then Eq. (2.24)

becomes:

A neikT

Jd = — — exp (-b)) {(———— - (l+cinflexp(-cinf)} (2.33)
(c1kT)? sin(ncikT)

The coefficient by, ¢}, and f) used in Eq. (2.25) are the same
for both Eq. (2.3U) and Eq. (2.33), and must be determined after the
shape of the potential barrier, ¢(x) is defined. If a standard
parabolic Schottky barrier of height ¢g formed on material with a
doping of Np is used as ¢(x), then the coefficients becomes:

ne  (eg-aV + np) /2 (og-qu) 12
by = — { [
Eco ng
(¢g-qV + nF)1/2(¢s-qV)l/2
<In ([ 177 11 (2.34)
nf
1 (¢g-aV + nf) /2 (sp-qv) 12
¢y = — In { [ 1/2 ] } (2-35)
Ec: “F
and
- )12
- B : (2.36)
4Eenf (¢g-nF)

The term Ew is the characteristic tunneling energy and is given by Eq.
(2.11). The applied voltage, V, is in voits, and all other energies

Ex , 98, Nf are given in joules.

In most practical cases ng << ¢g-qV and therefore the
coefficients will simplify to:

¢g - qV
by » ———— , (2.37)
Ea
4(¢B'qv)
nf
c] = —25 — (2.38)
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and
1

4EconF

fi = (2.39)

The above coefficients are substituted in Eq. (2.30) or Eq. (2.33) to
get the form of the I-V response for a given range of bias voltage,

For the case of large applied bias, (Eq. 2.33) ) it is seen that
the dominant term for the voltage response is the exp (qV/Es) term, It
is then possible to rewrite Eq. (2.33) as :

J o= Jg exp | 5& ) (2.40)
where
A $B nqkT
Jg = exp (- —) { —————} - (1 + cinflexp(-cinF)}
(c1k)? Eeo sin(wqkT)
(2.41)

with Jg representing a saturation current. Note that in this case J
does not go to zero for V = 0. This is because, for low bias, Eq.
(2.30) must be used instead, which does give J = 0 for V = 0, [t is
interesting to note the similarity between Eq. (2.30) and Eq. (2.10)
from Nordheim. The same dependence on exp(qV/E ) is seen, as well as

the exp (-¢g/E_) dependence which was incorporated into Jg in the
above,

The theoretical definition of contact resistivity was given by
Eq. (2.9) as:

dJ -1
Rc = — (2.9)
dv V>0

Since R¢ is given in the limit of V+0 , the appropriate J-V equation to
use to compute Re is Eq. (2.30). This has been done by Yu (15) and the
resulting equation giving Re for a FE type contact is:

Arq 9B Agq o8
R¢ = ————— exp(-—) - ———eqp(- — - cnf)] (2.42)
kTsin(mqkT) B (c1kT)? Ew

The coefficients by, cj, and f) are also evaluated at V = 0' and are:
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by » ~— , (2.43)
E
4
In ‘8
ng
D U (2.44)
2te
and
1
f, = (2.45)
4E_nf

With values of Np and ¢g chosen, by, c], and f; are calculated and Eq.
(2.25) is used to determine whether the contact is conducting in the FE
range. If Eq. (2.25) is not satisfied then Eq. (2.42) cannot strictly

be used.

Chang and Sze (13) have calculated theoretical [-V curves for a
MS contact based on an equation similar to Eq. (2.13). However, they
consider a total response of both tunneling and thermionic emission
components together instead of treating separate areas of conduction as
outlined with the conditions given by Eq. (2.25). They also solve for
the transmission coefficient, P(E), by a numerical integration of
Schroedinger's equation within the barrier region. Their results are
therefore not in closed form, as is Eq. (2.30) and Eq. (2.33), and
cannot be used to directly derive an expression for R.. However, they
do make a comparison between their numerical solution for P(E) and a
WKB approximation for P(E) and show that if electron tunneling occurs
at points other than near the top of the barrier, the value of P(E) as
predicted by the WKB approximation is very close to the exact value.
This means that the WKB approximation is valid over most of the range
of doping, Np, and applied bias, V, used in this research,

Change, Fang, and Sze (16) have made a numerical calculation of
Rc based on the computer analysis of Chang and Sze and have presented
curves giving Re for various values of Np and ¢g as well as curves of
R¢ vs. T for MS contacts ot GaAs. Their results, as expected, are very
similar to the values of R. as predicted by Eq. (2.42). The disadvan-
tage of the computer calculation is the necessity of performing the
tedious numerical integration for each change in parameter Np, ¢g, or
T. Therefore, the simplification in calculation and interpretation
available with the use of Eq. (2.42) is worth whatever small loss of
accuracy results from using the WKB approximation.
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2.6 Thermonic field emission

If, for a particular choice of Np, ¢g, and T, Eq. (2.25) is not
satisfied, then the contact may be conducting in the thermionic field
emission (TFE) range, This range can also be called thermally assisted
tunneling. Figure 2,4 illustrated TFE conduction., The electrons are
not being emitted from states around Ef, as they are in FE, but rather
from states higher up in the band around a maximum, Ep.

The thearetical calculation of J for TFE involves the same
procedure used in the base of FE, except that instead of expanding the
Taylor series for P around Ef, it is expanded around Ey. Padpovani and
Stratton (11), working from Stratton (41), performed such a calculation
on a Schottky barrier with the results.

A E

r:):n =) 2 rerf (5,621 (2.46)

K fm

nf
{exp [(—)-bm~(
2nkT kT

where En is the peak of the energy distribution of the emitted
electrons and is given by:

cnkT = 1 (2.47)

[Note: Padovani and Stratton include an extra %-factor in Eq. (2.46)
which is not in Stratton's original article.] Equation (2.46) is
applicable to forward biases greater than a few kT/q.

The calculation of the coefficients by, ¢y, and f, follow
analogously from the previous equations given for the FE case after an
assumption as to the shape of the emitted electron distribution has
been made, The assumption of a Gaussian distribution with half width:

1
s = ()M () (2.48)
¢ 172
m

was used by Padovani and Stratton (11) and for a forward biased
Schottky barrier the coefficients were calculated to be :

! : E En
bp = — [ (¢g-qVv + ﬂF)1/2(¢3-qV +ng + Em)l/z- —;;—-] ’
(2.49)
1 [ (eg-av + np)!/2(og-av + np + En)/2 ]
Cm = em— ]n ( 1/2 }
. Fm (2.50)
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Figure 2.4 Electron tunneling under thermionic-fields
emission for an applied forward bias.
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and

1
fm = (2.51)
4t _Eq
with
(eg-qV + nf)
cosh2 (—)

kT
e being as defined before.

The use of the above is also limited to cases where E5 is
between Ef and the top of the barrier. This gives conditions:

CIKT > 1 (2.53)
P(Ep) < exp(-1) (2.54)

where cy is given by Eq. (2.38) and P(Ey) is the transparency of
the barrier at E;. The condition of Eq. (2.54) is from Murphy and Good
(42). Substituting the coefficients in Eq. (2.46) and neglecting the
erf term gives:

qVv
Joe U exp (=) (2.55)
where
oo
Ec = [Eo cOth (—) (2.56)
kT
and
1/2 - N
AlnEs(¢g-qV + nf)] nf ¢8 * NF (2.57)
JS = exp - - = )
. kT Eo
cosh? (—)

kT

However, this equation is still applicable only for values of
forward bias, V, greater than a few kT/q. [t is clear that Eq. (2.55)
does not result inJ =0 for V = 0.

A more recent development of the .V response of an MS contact
in the TFE region has been given by Crowell and Rideout (12). Using




assumptions similar to the above for the shape of the emitted electron
distribution (Gaussian) and the region where TFE dominates, they give
an equation which is written as:

qVv qVv
J = Jg exp (—) 1 -exp (—) (2.58)
Eo kT
and
- 1172
A [vEs(¢g=-qV + nf)] 12 Ew
Jg = tanh(—)
kT -
cosh (—)
k

NF 9B *NF
exp ( — -~ ————) (2.59)
kT Eo

This equation differs from Eq. (2.55) in the extra [l-exp(- §¥)] term
in Eq. (2.58). Also, Eq. (2.59) has an extra [tanh({:%)]l/2 term.
Otherwise the equations are the same.

However, the recent presentation by Padovani (14) of Padovani

and Stratton's (11) results show that whereas Eq. (2.46) is applicable
only for V greater than a few kT/q it can be made to apply at all

forward biases with the inclusion of a [l-exp(- g¥)] term. Also

given in Padovani (14) is a new equation for fg , Eq. (2.51), which
becomes:

E
fm = [4ExEq (1--1)]'1 . (2.60)
%8

The new term, (1 - 5%), is reported to be a "correction" term to the
original Eq. (2.51).

If the new fy coefficient, Eq. (2.60), and the original values
of bgs Cm» and En, Eqs. (2.49), (2.50), and (2.52), are used in Eq.

(2.46), and if Eq. (2.46) is multiplied by the [(1 - &)1 term, the




result is the same as Eq. (2.59). That is, the results of the I-V
response in the TFE case as derived by Crowell and Rideout will match
those of Padovani and Stratton if the above mentioned corrections are ,
carried through. The same assumption used in the FE case, that ;
¢8 >> V + nf, is used here,

It should be noted, however, that even though Padovani (14)
outlines the above correction to Padovani and Stratton, he still uses
Padovani and Stratton's original equation (Eqs. (2.55), (2.56), and
(2.57) ) in describing the TFE response. Obviously, the more correct
form is that of Eqs. (2.58) and (2.59) and these equations will be used
in this research,

The equations for the TFE I-V response also have a range of T,
¢B8» and Np over which they are adequate approximations. This range is
given by Eq. (2.53) and Eq. (2.54). Using Eq. (2.38) for ¢y, and Eq.
(2.53):

A .

‘ 4(¢g-qv)
KT > 26_{ In | ———— |} (2.61)

. nf

i‘ ~— _—

must be satisfied in order to have TFE conduction occuring.

The other limitation to TFE is Eq. (2.54). Padovani shows that
this limit results in :

Eﬂ
cosh? (—) 2(¢g + nf - V

kT < ) (2.62)
sinh3 (—) 3,

kT

If Eq. (2.62) is not satisfied, the contact I-V properties are governed
by thermionic emission (TE) rather than thermionic field emission. In
the TE range the I-V response is that of a MS diode with rectifying
properties., This type of contact does not exhibit ohmic properties,
and therefore operation in the TE range will not be considered in this
research. For the most part, with the values of ¢g, Np and T used in

! this research, Eq. (2.62) is always satisfied.

Some additional clarification must be made concerning the
conditions expressed in Eq. (2.25) and Eq. (2.53). If Eq. (2.25) is
rewritten slightly it becomes:

C1kT < 1 - kT(2f) 12 | (2.63)




Therefore, if cjkT > 1 - kT(Zfl)l/Z, the contact is not operating
strictly in the FE range. For certain values of T, f;, and ¢y,

1 - a2 <ot <1 (2.64)

is satisfied. The left hand inequality means that the contact is not
in the FE range but at the same time the right hand inequality means
that the contact is not yet strictly into the TFE range.

The problem here is not that neither FE or TFE conduction is
occuring, but that in this transition range the Taylor expansion used
in determining P(E) is not strictly accurate. The actual type of
emission consists of both FE and TFE occuring simultaneously., In such
a case the strict use of either FE or TFE equation for the I-V response
will lead to slight errors.

For conditions that depart only slightly from Eq. (2.25) the
equation for the FE [-V response can be used as an approximation.
ODtherwise, the TFE [-V response can be used and will result in slight
errors until the conditions are such that Eq. (2.53) becomes satisfied.

The determination of an expression for R. in the TFE range, as
given in Yu (15), is again based on the use of Eq. (2.4). Using this
with the [-V response given by Eq. (2.58) and ignoring the minor
voltage dependence in the Jg term of Eq. (2.59), the value of R, for
the TFE range is given by:

kT kT Em E‘2° ¢g-NF nNFf

Re = — 177 coth(—) cosh(—) exp { - —
qA ["E¢(¢B+“F)] kT kT Eo kT
(2.65)

with E, being given by Eq. (2.56). This equation is applicable if Eq.
(2.61) is satisfied and can be used to give a fairly close approxima-
tion until the condition given by Eq. (2.25) is approached. A transi-
tion to Eq. (2.42) can then be made.

2.7 Theoretical calculation of R. based on FE and TFE equations

Using Eq. (2.42) and Eq. (2.65) with T = 23°C and ¢g as a para-
meter, Figure 2.5 results. The range of Np is from 10!8/cm3 to 1020
Jcm3.  The range in ¢g of 0.7 eV to 1.1 eV covers the values usually
reported in the literature for Au contacts on GaAs. The most often
reported value of ¢g is ~ 0.9 eV. The curves in the upper left portion
of the figure are for the TFE range of operation and those in the lower
right are for the FE range. The dotted line in the center represents
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Figure 2.5 Variation of contact resistivity with doping
level and barrier height at T = 23%C.
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the transition region where the TFE and FE equations for R. are not
strictly valid. The dotted line is merely a smooth fit curve joining
the solid lines together.

[t is evident from this figure that for ¢g = 0.9 eV, an Np on
the order of 10!9/cm? can initiate FE type tunneling but in order for
Rc to become very small, on the order of 10-®q-cm? , a value of Ny
near 102%/cm3 is necessary. Also evident from the figure is that the
value of Rc is extremely sensitive to Np. In the near 10'%/cm3 range,
a factor of two change in Np gives rise to nearly an order of magnitude
change in Re.

Based on the same equations, Figure 2.6 gives the temperature
variation of Rc in the FE range with ¢g = 0.9 eV and Np as a parameter.
For Rc to remain in the FE range at room temperature, with ¢B = 0.9 eV,
NG needs to be above = 2 x 10!9/cm3. Figure 2.7 gives the temperature
response or Rc in the FE range for Np = 6 x 10'%/cm® with ¢p as a
parameter, It is evident from both the figures that, as the contact
properties are pushed more into the FE range by larger Np of lower ¢g,
the value of R, becomes more independent of temperature. This is the
expected characteristic of a contact where carrier transport is by
tunneiing instead of by a thermally assisted emission process.

Figure 2.8 gives the temperature response of R in the TFE
range of ¢g = 0.9 eV and Np as a parameter. It should be noted that
toward the upper end of Np, (Np = 8 x 10!8/cm3) the TFE equation for R
is not strictly valid and the R¢ values shown in this region are the
approximation made by using the TFE equation. Figure 2.9 gives the
temperature response for R, in the TFE range for Np = 6 x 10=/cm3, the
upper end of the TFE region, with ¢g as a parameter, In both cases it
is seen that since TFE is a thermally assisted tunneling process, there
exists a larger temperature variation in R. .

The theoretical equations tor R. under TFE and FE, and their
resulting plots of R¢ vs. Np and Rg vs. T, are the predictions with
which the experimental data in this research will be compared. If good
correlation between theoretical prediction and experimental data is
observed, then the Schottky model would appear to be adequate for
describing contact properties and could therefore be used with more
confidence in future contact studies.
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Figure 2.6 Variation of contact resistivity with temperature
and doping level. FE range with DB = 0.9 eV.
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Figure 2.8 Variation of contact resistivity with temperature
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Figure 2.9 Variation of contact resistivity with temperature
and barrier height. TFE range with ND =6 x 10]8/cm3.







SECTION III

EXPERIMENTAL METHOD

3.1 Fabrication and characterization of Sn doped
surface layers

The contacts investigated in this research were fabricated on
n-type layers diffused into the surface of a p-type GaAs wafer,
Diffused layers were chosen over bulk n-type GaAs material because it i
was necessary to be able to vary the concentration of dopant in the ‘
GaAs to determine how this variation affected the value of contact 4
resistance, For tunneling contacts, the n-type layer surface dopant
concentration, Cg, is the parameter used in place of Np in the
theoretical equations. A p-type substrate was used because the
junction formed between the n-type region and substrate would provide
isolation for the actual current carrying layer and would allow for a
straightforward determination of Cg.

2o b Neudh

The fabrication of the diffused Tayers utilized a Sn bearing
oxide layer spun on the p~type substrate surface. The formation of
n-type diffused Tayers in GaAs using Sn in an oxide layer source has
been demonstrated by other workers. To overcome this problem,
diffusions are usually performed by enclosing the GaAs wafer in an
evacuated and sealed or a partially sealed quartz box or ampoule
containing some elemental As or extra pieces of GaAs. In such a ¢losed
environment the As escaping from the additional pieces of As and GaAs
creates an overpressure of As which prevents the escape of As from the
wafer surface.

In this research, open tube diffusions were tried initially and
the problems of As loss and undesirable surface disruption were
observed. It was therefore decided that a closed chamber type of
environment was necessary. An evacuated and sealed ampoule structure
was not used because of the relatively difficult fabrication. Instead
a "semi-closed chamber" (SCC) type of vessel was used.

Figure 3.1 shows a picture of the SCC, made from a gquartz
inner-outer joint, the ends of which were closed as in a test tube,
For the diffusion, the dopant coated GaAs wafers were placed inside the
SCC along with some pieces of elemental As and extra pieces of GaAs,
The two halves of the SCC were pushed together and the SCC was placed.
into an open quartz boat which allowed for easy insertion and removal
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Pigure 3.1 Photograph of the semi-closed chamber used in

the diffusions.




from the diffusion furnace. During the diffusion an Ar flow was main-
tained through the furnace,

During the initial period of the diffusion, the As in the SCC
vaporized and the increased pressure forced the SCC apart. This As
vapor escaped from the furnace tube and was exhausted through a
"scavenger box" at the furnace mouth. After this occured, the SCC was
obviously not totally enclosed but, with only a slight separation
between the halves of the SCC, the internal atmosphere was As saturated
and stagnant and this was enough to improve the surface quality very
much over the open tube diffusion case. In a few cases some slight
pitting was still seen but the surfaces generally remained specular in
appearance.

After the diffusion, pieces of the wafers were scribed out for
lapping and staining. The test pieces were hand lapped on a jig with
an angle of ~ 2°, The junction was then stained with a commercial
staining solution (48) which delineated the n-type surface layer from
the p-type bulk. The depth of the n layer (the junction depth), Xjs
was measured by examining the lapped and stained sample under a
microscope that was equipped with a Watson interferometer, The value
of xj was calculated from:

A
;o= - 3.1
Xj n(z) (3.1)

where X 1is the wavelength of the illumination (in this case
A = 0,546 u), and n was the number of whole fringe shifts from the
original surface, over the lapped edge, to the delineated junction.
With a little practice, shifts of half a fringe were easily apparent
with shifts of 1/4 of a fringe being harder to estimate. An accuracy
of +1/2 a fringe translates to = + 0.14 y accuracy in the measurement
of xj. The diffusion process parameters of time and diffusion
temperature were chosen to attempt to realize xj values of = 1y and
therefore the accuracy to which x; could be determined with the above
measurement is on the order of 15%.

The remaining main portion of the diffused wafer, on which the
actual contact structures were made, was then tested to determine
values for sheet resistivity, Rg, average resistiyity, p , average Hall
mobility, uy, and average carrier concentration Np. The measurement
was made by the van der Pauw (49) technique. Contact to the n-type
layer was made with small dots of In-Ga eutectic on the wafer surface
along the periphery of the wafer. The relative ohmicity of these
contacts was checked by examining the I-V curve of the diffused layer
between all contacts on a transistor curve tracer. A straight line
represented adequate contact ohmicity. (Actually, due to the
potentiometric nature of the measurement used in the van der Pauw
technique, relatively small contact non-ohmicity is unimportant.)
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The resistance values obtained from the van der Pauw
measurements were used to determine a value of o for the layer, The
determination of p involved the use of the value of x; determined
earlier, Van der Pauw type Hall effect measurements were made to ]
yerify that the layer was n-type, and to determine values of uy and
Np. The average mobility and electron concentration values are not
directly useful in determining Cg but do give an order of magnitude
check on similar values obgserved by other researchers for GaAs. It

should also be noted that Np gives the average ionized electron density 4
and not the average donor dopant density, unless full ionization can be
assumed.

The measurement of o is very important because p data is used
to determine the value of dopant surface concentration Cg, and Cg is
the most sensitive parameter controlling Rc.. This is readily seen from
Figure 2.5, Therefore, equally important is the way in which Cg is
determined from p data. The method used in this research was to relate
o to Cg through an "Irvin" curve (50).

An “Irvin" curve is a plot of Cs vs. p and is developed by
considering how p is related to Cg, Cg and the shape of the diffused
dopant profile, Because of the importance of the Cg term in
accurately comparing theoretical predictions of Rc to experimental
data, the rest of this section details the deveiopment of an "Irvin"
(p-Cg) curve for Sn diffusions in GaAs wherein several important facts
unique to this research, are considered.

The development of the p-Cg "Irvin" curve initially involves
considering that for an n-type sample the resistivity is given by:

_1. = Qupn (3.2)
p
where ¢ = resistivity
q = electronic charge
un = electron mobility
n = electron concentration

In a diffused layer n is a function of distance into the wafer
and therefore p is also a function of distance. The effect of the
profile is to create an n-type layer which has an average o value,
indicated by p, and given by:

1 q Xj
— = -— [ uy (N)N(x)dx (3.3)
xj °

| o




Eq. (3.3) represents the effect of all individual p(x) values taken in
paraliel and averaged over the entire surface layer from x = 0 to x =
X 4

JQ

The integral for p is not easily calculated because the
mobility, u,, is a function of doping and is therefore also a function
of x. The usual way to calculate Eq. (3.3) is to use a computer and
approximate the integral with a numerical integration. However, the
integral can first be simplified by removing the dependence on Xje

The electron concentration, N(x), is determined from the dopant
distribution,

X
C{x) = Cgerfc —— (3.4)
2/ Dt
where D = diffusion coefficient for Sn in GaAs
at the diffusion temperature used
t = time of the diffusion

Eq. (3.4) is the standard profile expected for a diffusion from an
unlimited source as was the case for this research. A simple
derivation of Eq. (3.4) can be found in Grove (51).

If a substitution of

y = (3.5)
27 Dt
is made then
dx = 2/0t dy ’ (3.6)
X
J
yJ = —————epe (3'7)
2/ Dt
and Eq. (3.3) becomes
1 q Yj
_— o e —_— 3.8
: J T un(ON) 2 T gy (3.8)
yj(Z v/ Dt)

or simplified:
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XN

—

q .
— = — [ Y3 (NNQ) dy (3.9)
o Yj °

where y; is given by the condition that at the junction the free
electron concentration equals the background concentration of holes in
the bulk p-type substrate. That is:

Nyj) = Cg (3.10)

The simplification in Eq. (3.9) over Eq. (3.3) is that for the
calculation, specific information on D or t is no longer needed since
the averaging process removes the dependence on these variables. For
any particular fabrication run in which D or t may vary, Eq. (3.10)
must still be satisfied and therefore the given values of Cg and Cq
alone determine o . Most importantly, the curve developed from Eq.
(3.9) is valid for any particular combination of D or t, as long as the
assumptions concerning the shape of the profile are the same and Eq.
(3.10) is satisfied.

In the development of the p-Cs curve from Eq. (3.9) the value of
un(N) does not have to be given with respect to x or y because in the
computer calculation, at each y increment points, N(y) is calculated
first and then u,(N) is determined, Therefore, a up vs. N variation is
sufficient. The relationship for un and N used in this calculation was
obtained by fitting an equation for up in terms of N to the
experimental data for up vs. N given in Sze (9).

(Some important facts should be noted concerning the up vs. N
graph for electrons in GaAs as given in Sze. The graph is labeled as
up vs. "impurity concentration" instead of "“electron or carrier
concentration”., However, in the original article of Sze and Irvin (5),
from which the graph was taken, the statement is made that the plot is
actually of u, vs. carrier (electron) concentration for various bulk
n-type GaAs samples. The authors used the assumption that in GaAs eat
room temperature all donor impurities were ionized and therefore
carrier concentration was equivalent to impurity concentration.)

From this point, further development of the p-Cg curve depends
on the formulation of the N(x) term in Eq. (3.9). It is therefore
necessary to consider the relationship between the Sn dopant concentra-
tion profile, C(x), and active electron concentration profile, N(x).
Specifically , an assumption must be made as to the degree of dopant
ionization, Tuck and Badawi (44) confirmed that the Sn concentration
in GaAs can be accurately characterized by an erfc profile as given in
Eq. (3.4). However, they also made some measurements which implied
that not all Sn donors were ionized, meaning that N(x) was not the same
as C(x), as it would be for full ionization.




The problem of determining whether or not all Sn donors are
ionized can be analyzed by considering the physics of electron
conduction. For this research, diffusions with rather large dopant
concentrations, in the 10'8 to 1020 per cm 3 range, were attempted.

In this range one would expect that the dopant is not fully ionized.
Therefore, a calculation must be made to theoretically determine the
Fermi level and degree of ionization. This straightforward calculation
is based on the charge balance equation (53):

4

n = Np*-p-Np” (3.11)

where for an n-type layer, p s~ 0 and Nag~ = Cg. One crucial 4
assumption used at this point is that even at these very high levels of k
dopping the Sn donors can be assumed to lie at a discrete energy level, 1
Ep ~ 5 meV below Ec (54). The number of free electrons, n, can then be
calculated using the expression: 3

2 1
n = N (—) [ V€ de (3.12)

° ng
o 1 +exp (e- kT)

where

. Znnr*kT) 3/2

NC = 2 L (3.13)

n2

is the effective density of states in the conduction band

e = gy = energy referenced to E. = 0
ng = Fermi level referenced to E¢c = O
The above equation assumes a parabolic density of states vs. energy
distribution for electrons in the conduction band.

The ionized donor density is given by:

1
Np* = Np (3.13)

1 + 2exp (E{J

where Np = concentration of donor atoms .

With the above, Eq. (3.11) becomes:

4




(3.15)

Eq. (3.15) is solved to yield a value of Fermi level, nf, and subse-
quently gives the value of electron concentration, n, for the chosen

conditions of Np, Cg, Ep, and T within the given assumptions.

When the p-Cg (“Irvin") curve was being initially calculated to
use in this research it was believed that, as opposed to a calcultation

performed by Galiga (55) in which the full ionization assumption of i
N(x) = C(x) was made, partial ionization as included in Eq. (3.15) !

needed to be considered,

1'

3.

4.

5.

6.

For a given Cg and T the dopant concentration
Np in Eq. (3.15) was given by

Np(y) = C(y) = Cg erfc y

At each integration point, yi, Eq. (3.15) was
used to determine ng and subsequently N(yi).
The vatue of the Fermi -Dirac integral for a
particular value of ng was evaluated using the
series approximation of Battocletti (56).

Using the u, vs. N graph in Sze (9), from which
a fitted equation of

~ 1500 [N(y)] + 30,000 _en?_
Hn - J » V-sec

was obtained, a value of up(yj) was calculated.

The product of up(yi)*N(yj) gave the integrand
value at yj.

The integral was calculated using a Simpson's
approximation (70) involving the summation of
all the up(yj)*N(yj) products up to a point

where N(yij) = Cg, namely the junction at y = yj.

p was then calculated using Eq. (3.9).
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Therefore, a computer numerical integration
of Eq. (3.9) was performed and involved the following steps:

(3.16)




This sequence of calculations was performed for a range of Cg
and Cg values and the graph of Figure 3.2 resulted. This graph and the
preceding calculations were used to attempt to determine Cg for some of
the experimental wafers but severe problems became apparent., As can be
seen from the experimental data section in this report, experimental
values of o in the low 10-3 range were measured. If the calculations
given in Figure 3.2 were correct, Cg values very much greater than 1039
are indicated. The curve of C¢ vs. p is increasing so rapidly in the
low ¢ region that values of 10§°/cm3 or 1021 /cm3 would be likely.

Given that the manufacturers specification for the dopant
concentration of the undiluted spin on solution was only 102%/cm3, the
accuracy of above results and Figure 3.2 is highly doubtful, Also, if
Cs values of 1029/cm3 or more were present, the GaAs would be extremely
highly doped and drastic changes in band structure could be expected,
leading to inaccuracies in the assumptions used to derive the equations
for Cs VS. Po

For these reasons it was concluded that Figure 3.2 was not
correct. The main discrepaancies lay with the assumption of partial
ionization of the Sn dopant at a discrete level of Ep.

An explanation of electronic conduction in heavily doped semi-
conductors, as given in various sources such as Fistul (57), Madelung
(58), or Blakemore (59), point to the formation of an impurity band
with associated impurity band conduction, especially for GaAs at the
dopant levels used in this research., The extremely small value of £p
for Sn could quickly lead to band tailing such that a continuous exten-
sion of E. down through Ep and into the band gap is possible.

As Sze (9) details, there have been some attempts at
quantitatively determining the changes in the band structure resulting
from high doping. These calculations are extremely difficult in them-
selves and incorporating such calculations into the calculation of o
and then Cg would clearly be intractable. However, as Madelung (58)
states, when such band tailing is present, the effect is to reduce Ep
to zero and a reasonably accurate assumption is to consider that all
the donor states are ionized,

With this in mind, the calculation of Cg vs. p was changed to
incorporate the assumption of full ionization of all Sn donors. This
results in the use of N(y) = C(y) = Cg erfc(y) in Eq. (3.9). The value
of up was still given by Eq. (3.16). The use of the Sze graph for uj
vs. N seemed valid since it is an experimental dataplot of actual
mobilities. Regardless of the mechanism responsible for determining
the actual ionization level of donors and their subsequent mobilities,
in impurity bands or otherwise, Sze's graph gives the actual value of
un measured for a measured value of carrier concentration N. There-
fore, the limiting assumption in calculating the Cg vs. o plot was not
the use of Sze's graph in light of band tailing and the resulting
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Figure 3.2 Variation of p and CS for an erfc profile, n-type
diffusion in GaAs. P-type substrate, background
concentration, CB‘ Partial ionization of Sn
donor atoms.
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change in conduction specifics, but rather the assumption that doping a
sample with C(y) Sn atoms resulted in N(y) = C(y) free electrons.

When the full ionization assumption was used and the same
integral calculation procedure was performed on Eq. (3.9), Figure 3.3
resulted. Since this assumption and qeneral calculation procedure was
the same as used by Baliga (55) the results should be the same. A
comparison of his Cc vs. p graphs and Figure 3.3 shows that the values
are nearly identica%.

As to the validity of the assumption of full ionization,
experimental data given later on will show that the value of Cg deter-
mined from a measurement of ¢ and the use of Figure 3.3, agrees well
with the values of Cg determined from I-V measurements on the test
samples. The agreement of these two Cg values indicates that the
assumption of full ionization is valid. This point will be discussed
again in later sections.

3.2 Fabrication of contact structures

The contact structure used in this research is shown in Figure
3.4. The squares at both ends are the contacts to be tested. The
interior strips are voltage pick-off strips which allow the measurement
of the IR drop along the n-type layer. This structure allowed the
determination of Rc by the transfer length method as will be detailed
in the next section,

The fabrication of the contact structures utilized a photolitho-
graphic lift-off technique. After the n-type layers had been diffused
and the dopant film removed, a layer of photoresist was spun on the
surface. The photomask used to expose the photoresist consisted of a
photographic emulsion plate negative having five identical contact
structures. This allowed the fabrication of five test structures at
one time on the same diffused layer. After exposure and development of
the photoresist the resulting pattern consisted of holes in the
photoresist layer, exposing the GaAs surface where contacts were to be
made,

The next step was to evaporate a layer of Au onto the photo-
resist covered wafer., An Au-GaAs MS contact was formed in those areas
where there were holes in the photoresist layer.

To remove the unwanted Au and to form the final contact pattern
of Figure 3.4, the wafer having the photoresist coating and Au film was
placed in a beaker filled with acetone, The acetone dissolved the
photoresist and lifted off the Au not in contact with the GaAs, leaving
behind the desired contact structure pattern.

After the contact structures were formed, each separate
structure was scribed apart to make an individual test element. Each
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of these structures was composed of the Au pattern on top of an n-type
diffused layer, separated by p-n junction isolation from the p-type
substrate beneath. The scribed structure was chosen over a mesa-etched
type of separation because of the ease with which pieces of GaAs can be
scribed apart and the relatively smooth cleave edge which results,
Etching apart the individual structures would have also have involved
another masking step. Overall, etching would have resulted in more
complicated processing without any overriding advantage.

The formation of individual n-type test islands in the p-type
substrate was also attempted but the process was not used because of
difficulties associated with the initial oxide layer needed to mask the
Sn diffusion into the non-island areas of the substrate.

3.3 Transfer length measurement

The transfer length measurement (60), also known as the Schottky
method, is actually an extension of the general transmission line
method (TLM) (61) of measuring R.. [n the transfer length method, the
actual measured quantity is the transfer length, LT , which gives R¢
through the expression

Re = RelL7? (3.17)

The derivation of Eq. (3.17) and an understanding of the physical
meaning of transfer length can be based on the model of an MS contact
with planar current flow as shown in Figure 3.5(a). Figure 3.5(b)
shows the variation of the voltage in the conducting layer versus
distance from the contact in Figure 3.5(a). The conducting Tayer (in
this case n-type) is characterized by a sheet resistance, Rg. The
non-ideally conducting properties of the interface are lumped into the
term R which, in the model, represents a distributed resistance of the
contact. Theoretically R¢ is given by Eq. (2.9).

In Figure 3.5(a), for purposes of this initial calculation, the
contact length is assumed to be infinite. Practically, this assumption
is valid as long as the Ly value is much less than the contact length,
The contact edge defines the x = 0 point with x < 0 representing the
non-contacted diffused n-type layer. The contact metal is assumed to
be perfectly conducting and therefore at a uniform potential, in this
case ground.

Current is flowing into the layer under the contact from the
left, For x < 0 the voltage drop, V(x), with respect to x is dependent
only on the IR drop along the Rg of the layer. Or:

ZS dV(X)
I = - —

(3.18)

Rs dx
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Figure 3.5 Model of a MS contact used to determine
transfer length. (a) Lumped element
model. (b) Voltage distribution.
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where Zg is the width of the contact structure through which the
current flows.

For x < 0, a plot of V(x) vs. x yields a straight line of slope
= -]Rg/Zg. Such an experimental plot of V(x), as measured from the
voltage pick off strips, versus the separation of the strips, is called
the transfer length plot and the value of Rg can be calculated from the
slope since I and Zg are known,

Eq. (3.18) is valid up to the contact edge at x = 0., At some
point xj > 0, some current is lost to the contact through R¢. In the

interval dx around x) this amount of current is:
z :
dI; = - — dyV(x) (3.19)
Re X = X1
and the current remaining in the conducting layer at x = xj is % j
Z dV(x)
I1 = I{x=x3) = -— (3.20)
Rg dx X = x]
Taking the derivative of Eq. (3.20) !
dI 7 d2v(x)
— = e — - (3.21)
dx Rg  dx X = Xq
or rewritten:
Z d2V(x)
dl = - - dx
X = X1 2 , (3.22)
Rg dx x = xj
which must be equal to Eq. (3.19). Therefore:
z d2v(x) 4
- — dx = — dyV(x) (3.23)
Rg dx2 Re
or
1 d?V(x) 1
_— - —V(x) = 0 (3.24)
RS dx2 RC

which has the solution:
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V(x) = V(0) exp (- %?) (3.25)

where LT = [Rc/Rg¢]/2 which is Eq. (3.17).
The slope of Eq. (3.25) at x = 0 is:
dv(x) v(0)

T e m— (3.26)
x =0 Lt

dx

and must bhe the same as dV/dx for x < 0.

Therefore, if a plot of V(x) vs., x 1is made and the line for
x < 0 is extended with the same slope past x = 0, the intersection of
this extended line with the V(x) = 0 axis will occur at x = L. A
typical transfer length plot showing the value of Ly is given in Figure
3.6, In this figure the right hand contact is ground and V(x) is
measured with respect to this point. The voltage at each pick off
strip is assumed to be the voltage at a point along the surface which
is the center of the strip. This does not give rise to large errors
since the width of the strip is small compared to their separation,

A value of Lt for the left hand contact, where the current
enters, can also be found. In this case Lt is the difference between
the contact edge and the point on the extended line where V(x) is equal
to the applied voltage, Vppp. Any asymmetry in contact fabrication due
to processing will show up as different values of Ly.

In the above derivation any voltage drop in the vertical
direction due to vertical current flow in the conducting layer has been
implicitly neglected. Schuldt (36) analyzed the exact case and showed
that for thin layers, as in the case here, the above approximation
Teads to very little error.

An interesting point should be noted concerning the actual
resistance of the contact, RCoNT- A non-zero value for RgonT gives
rise to a finite, measurable voltage drop across the contact, which is
the V(0) given by Eq. (3.25). V(0) can be calculated from Eq. (3.26)
and from the slope dV/dx for x < 0 which is

dv(x) IRg
— 2 e (3.27)
dx x <0 VA

Substituting gives:
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IRsLT

V(o) = (3.28)
z
or:
v(0) RLT
RconT = R = - (3.29)

and substituting Eq. (3.17) for Rg gives:

RC
Recont = s (3.30)
T

Normally, when current flow is perpendicular to the interface, the
contact resistance RggnT 15 determined from R, as:
Re

Rcont = e (3.31)

However, for the above case, with lateral current flow into a
planar contact, the apparent contact area is ZLy and is independent of
actual contact length, Therefore, in a planar contact with a value of
Rc giving rise to a small Lt , the current will crowd into the edge of
the contact within an effective distance of Lt . In order to lower
RconT for such contacts, the width, Z, can be made wider, but
increasing the contact length, and with it the apparent area, will not
reduce RcoNT through Eq. (3.31) as is commonly thought. Fang, et. al.
(37) discuss this idea further.

According to the previous development, if Rc = 0 then Lt = O.
However, if Re = 0 then the vertical IR drop through the conducting
Tayer is no longer negligible in comparison to the IR. drop and the
previous treatment is in error. Hower (60) and Berger (61) give a
correction factor but in most cases of non-zero R, it can be neglected
with Tittle resulting error.

For the previous development an important assumption was that
the contact length was infinite. Practically, if a transfer length
plot is made and yields a value of LT which is very much shorter than
the physical length of the contact, then Eq. (3.17) is valid to use to
determine Rc.

However, for cases in which R¢ is not sufficiently small, as was
the case for imany contacts in this research, a transfer length plot can
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yield an L1 value which is greater than the physical contact length, ]
xc. Clearly in such a case the above assumption of an infinitely long
contact is not valid and a more exact analysis must be performed.

The more exact analysis is based on the model given in Figure
3.7. This model is very similar to that of Figure 3.5 except for a
finite contact length x. and a change in coordinates. In this case,
since it will be easier to perform an integration of current from right
to left, the origin of the coordinate system is at the right end of the
contact,

The basic assumptions used previously still hold. The
conducting layer is described by a sheet resistivity of Rg. The layer
is thin and voltage drops due to the vertical flow of current are
negligible. The contact itself is perfectly conducting and is at
ground potential. The effect of the MS interface is lumped into the
distributed specific contact resistivity term R.. Current enters the
contact from the left of A = x. and begins to be taken to ground
through Rg. The contact width is equal to Z. 4

EV

il E

At any point, A, the current lost to the contact, dI{(A), is
given by:

V(x)
dI(A) = —— Zdx (3.32) 4
Re

Since all the current entering from the left, [ygr, must eventually go
into the contact between A = xc and A = Q:

xc V()
Itor = [di(x) = Z dx (3.33)
o RC

and this gives a boundary condition on V()).

[f Vg represents V(x = 0), a constant which will be calculated
Tater, the voltage V(a) at any point 0 < a < xc , is the sum of Vg and
the total RgdI voltage drops up to that point giving:

a Rs
Vg + | dI{x) — (a-r) (3.34)
° l

]

V(a)

The [Rg/Z](a-A) term is the resistance along the conducting layers up
to the point A = a , through which I{\) flows creating a voltage drop.

If Eq. (3.34) is rewritten using Eq. (3.32) the result is:
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Figure 3.7 Model used for a finite length contact.
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Va) = Vg + [° VC* Rg(a=x) dA (3.35)

and this is the equation which must be solved to determine V(i).

If the derivative with respect to a is taken on both sides of
Eq. (3.35) the result is:

d?V(a) Rg
- — V(@) = 0 (3.36)
da? Re

which is the same as Eq. (3.24). This is to be expected since the only
difference between the previous model and this more exact model lies in
the boundary conditions, Therefore, the same relationship of

Re 11/2
s i)Y (3.37)
can be made to define a transfer length relating Rc to Rg.

The solution to Eq. (3.36) with the condition of a finite Vg at
A =0 is:

V(a) = Vg cosh Q%?j (3.38)

If Eq. (3.38) is applied in the boundary condition of Eq. (3.33)
for the total current, the result is:

IToT Re
Vg = X (3.39)
ZL1sinh
Tsinh(TS)
and
IToT Re
V(a) = = cosh (%—) (3.40)
ZLTsinh(t%) T

[f, for comparison, tne coordinate system is changed back to the same
as that in the previous development, then :

@ = Xc - X (3.41)
and

70T Re Xg=X
V(x) = cosh ( ) (3.42)

inh(2&
ZLTSInh(LT] Lt
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Eq. (3.42) is the more exact expression for Eq. (3.25). Given that:

exp <1‘;§) - exp (ﬁ)

sinh (%%) = >

and

(3.43)

X X
exp ({5) exp (f%) + exp (%) exp (%%)

Lt

cosh (5f%5) =

2
(3.44)
for the case of an infinitely long or semi-infinite contact in which
LT << x¢
Xc
G »1 (3.45)
then «
fal oy
Xc exp (%)
sin h — =~ (3.46)
Lt 2
and
exp ({‘)
X¢ =X X
cosh (-f?-) exp(- f?) (3.47)
2
and if Eqs. (3.46) and (3.47) are substituted into Eq. (3.42) the
result is:
=)
IToTRe exp (f7 x
V(x) = exp ('E‘..F)
e (J8) 2
exp
Lt t%
or

V(x)




Since from Eq. (3.37):

Substituting into Eq. (3.49) gives:
ItotRe . X
V(x) = ———— exp (- X3 ) (3.51)
z T

dVv(x)

dx

IToTRs
g

dV(x) ItotRe 1
= - " - ———
dx ZLysinh( - t%) LT
and at x = 0 :
dv(x) IToTRe
) inh( - Xc
dx <=0 ZLysinh( LT)
or
dv(x) ItotRe
dx <=0 L2
and using Eq. (3.50),
dv(x) IToTRs
dx x=0 z

which is the same as Eq. (3.25) and shows that the exact expression,
given by Eq. (3.42), does become Eq. (3.25) in the limit of the
simplified model's assumption of infinite contact length,

For the conducting layer portion x < O:

(3.52)

Since Eq. (.52) must equal the slope of dV/dx at x = 0 as determined
from Eq. (3.42),

X¢ =X
sinh ( ) (3.53)
Lt
1 Xc =X
- (—) sinh { ) (3.54)
Lt Ly
(3.55)
(3.56)

which is the same as Eq. (3.52) if Z = Zg is assumed.




The transfer length plot yields a value of transfer length when
the V(x) line is extended past the point x = 0, with a slope given by
Eq. (3.52), and intersected with the V(x) = 0 axis. The equation of
this extended line is given by:

IToTRs
vix) = - ; (x) + Vv(0) (3.57)

where V(0) depends on whether Eq. (3.25) or Eq. (3.42) is used. For
the case of an infinite contact, from Eq. (3.25):

IToTRsLT
V() = - ——— (3.58)
z
therefore:
IToTRs IToTRsLT
v(x) = - (x) + ~—— (3.59)
Z
and when V(x) = 0, x = LT,
For the more exact case, using Eq. (3.42):
cosh (3£
ITotRe o)
v(o) = - ——— (3.60)
Lt sinh (LT)
and therefore (using Rg = Re/LyT2in the -IToTRg/Z term):
X
ItoTRc troRsly %" (T¢)
V(ix) = - x) + - (3.61)
wy? (R sinh (t§)
and when V(x) = 0,
cosh (3£)
Lt
X = Xxr = LT " (3.62)
inh
sinh ()

where x| 17 is referred to in this research as the apparent transfer
length.
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It is clear from Eq. (3.62) that for a given combination of R
and Rg, a transfer length plot can yield a value of x| 7 greater than
xc. In such cases a calculation of :

Re = Rs(x1)? (3.63)

would be in error.

The solution, for cases in which the assumption is not valid, is
to take the value of x| T as determined from a transfer length plot and
using the measured value of x. in Eq. (3.62), calculate the proper
value of Ly to use in Eq. (3.50).

Figure 3.8 is a graph of Eq. (3.62) giving the relationship
between x) 7 and Lt for an observed value of x 1 with respect to xc.
The figure was determined by first rewriting Eq. (3.62) as:

h (5 h (3
X7 Ly ©os (t%] cos (LT) (3.58)
7 T TR X . X
Xc Xc sinh (T?) (tﬁ) sinh (E?)

Then, for various values of xc/LT , the right hand side of Eq. (3.64)
was calculated to give x 7/xc.  The product of the chosen xc/Lt
value and the resultant x| 7/xc value gives the value of x| 1/xc value
gives the value of «x 1/Ly from:

Xc  XLT XLT (3.65)

Lt Xc Lt
The figure then represents a plot of x| 1/xc vs. x_71/L7.

To use Figure 3.8, first a measurement of x| 7 is made and a
value of x 1/xc 1is calculated, From the figure, the corresponding
value of x 7/Lt is found and Lt is calculated and used to find R/

The other approximation extreme is that xc/Ly >> 1 or even x./Ly
< 1. This would occur if Rc was very much larger than Rg leading to a
large Lt. In such a case, in_ the limit when xc/LT << 1:

cosh (%%) ~ 1 (3.66)
and
. Xe X
sinh (T%} » I% (3.67)
60
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These substituted into Eq. (3.60) give:

IToTRC 1
2L X
T (E?)
simplifying to:
IToTRC
V(o) = (3.68)
ZXC
or
v(0)
Re = (Ixc) (3.69)
ITo1

Eq. (3.69) is a statement that for R. large in comparison to Rg, the IR
drop in the contact is almost entirely across Rc. In such a case
current crowding at the contact leading edge is minimal and most of the
IToT current flow is perpendicular to the contact, With V(0) being the
voltage drop across this contact due to ITgT and Zxc being the total
contact area, Eq. (3.69) is the same as Eq. (3.31) giving RcgnT for a
nonplanar contact.

In Figure 3.8, the straight line represents a plot of the
equation:

X4T XLT.2
—_ = (=) (3.70)

Xe LT

which is for the case when x./Ly << 1. The derivation of Eq. (3.70)
from Eq. (3.64) is made using the above assumption and Eqs. (3.66) and
(3.67).

From Figure 3.8 it is seen that if the value of x| 7 < 0.4 x¢ ,
then the infinite xc approximation of x 7= LT is valid to about 1%.
Also if xp 1 > 10 x¢ , Eq. (3.69) can be used in a simple calculation
using V(O% » I1oT and contact area te find R, accurate to about 1%.

Berger (61), using a transmission line model similar to Figure
3.7, developed equations for V(x) and I[(x) which could be used to cal-
culated Eq. (3.42) and the other subsequent equations. However, the
development given in this section closely parallels the development
presented on infinite length contacts, and therefore comparisons to
to that case are more straightforward than if the method of Berger was
used,




R

For the case of x¢/Ly << 1, it is very easy to determine R¢ from
Eg. (3.69) and from a measurement of the voltage, Vi of the pick-off
contact strip just before the end contact. The voltage drop across the
contact, V(0), is then given by:

IToTRsAL 1
V(o) = V] -~ ——m— > (3.71) !
4

where AL is the separation between the voltage pick-off strip and the
contact edge.

The model as shown in Figure 3.5 and Figure 3.7 strictly depicts
current flow for a reverse biased MS contact when an n-type conducting
layer is used. Actual contact performance in terms of R. and the I-V
response were measured on the opposite, forward biased contact, of the
contact structure, However, all the equations developed herein can
also be applied to the forward biased contacts since the models used
are still the same. The only changes are in the sign of the current
and the reference for the contact voltage, being Vapp instead of
ground.

If an arbitrary reference of Vpapp = 0 is used, then V(x) for the
forward bias contact will be negative and will represent the voltage
difference between Vppp and the voltage in the conducting layer. The
value of transfer length Ly or x_ 1 will have the same meaning and can
be used in all the equations developed previously.

3.4 Current-voltage (I-V) measurement

Another important experimental measurement used in this research
was the variation of current with voltage, It is easily seen from the
[-V equations derived in Chapter Il that the FE or TFE tunneling con-
tact exhibits an exponential [-V response. For a forward bias greater
than a few kT/q the slope of the [-V curve gives the value of E or E,
and from these the doping level under the contact can be determ®ned.
The extension of the [-V curve to the V=0 axis gives Jg, from which a
value of ¢g can be calculated., Therefore, the major parameters used in
detailing theoretical contact performance, ¢g and Cg, can be readily
determined with I-V measurements.

The actual procedure used to determine ¢g and Cg by this method
was first to measure [-V data on the various contact structures and
then to curve fit the theoretical equations to the experimental data.

A suitable fit meant that the general form of the equations, and
therefore the general aspects of the Schottky model, were valid to use
in explaining contact performance.

A stronger argument for the use of the tunneling model comes
from relating the values of ¢g and C5 , as determined above, to values
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of ¢g and Cg taken from other measurements, With the contact
structures used in this research, the other commonly used methods of
measuring ¢g were not applicable and a further discussion of this fact
will be given later. However, an independent measurement of Cg, using
the van der Pauw technique, did yield a value which could be compared
to that determined from an I-V measurements, If the values of Cg as
determined by the two different techniques are the same, then the
contacts are presumed to operate as tunneling contacts. A further
verification of tunneling operation was made when the ¢g and Cg values
from the I-V fit were used in the theoretical equations for R. and
compared to the actual variation of R. vs, temperature.

One problem in relating the theoretical I-V equations to
experimental data is that the current flow in the actual contact
structures is planar, giving rise to current squeezing at the edge of
the contact. The effect is analogous to the base current crowding in a
bipolar transistor and can be analyzed using the same equations (62).

However, for this research, a development of the effective I-V
response for the contact was performed using a model similar to those
given in the development of Rc.. The only difference is that in the
model instead of a distributed R., distributed diodes with a response:

Js exp (3 (3.72)

were used. The basic form of Eq. (3.72) is valid for both FE and TFE
operation, 4s can be seen by comparison to Eq. (2.40) and Eq. (2.58)
(for biases greater than a few kT/q). For the FE case:

J

n

E' = E {3.73)
and for the TFE case:

E' = Eg (3.74)

There is a slight dependence in Jg on V but since the effect of
V through the exponential term is the dominant factor, the dependence
in the Jg term can be neglected with only sight error.

Figure 3.9 shows the model of the contact as changed for use in
the development of the -V equations. The figure shows the case of a
forward bias contact made on an n-type conducting layer with sheet
resistivity Rg. As before, voltage drops due to vertical current flow
in the conducting layer are neglected. For convenience, the voltage on
the metallic contact of length x. is taken as ground. Therefore, the
values derived for voltage in the conducting layer, V(x), will be nega-
tive,

The total current flowing through the contact is ItgT and enters
the conducting layer a point x = xc. Since the voltage, V(x) , for
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Figure 3.9 Model used to derive I-V equations for the
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0 < x < xc cannot actually be measured, experimental data consists of
a measurement of IToT vs. V(x = xc)/ Actually, V(xc) also cannot be
directly measured but can be easily determined from the measured
voltage, Vi, of the first voltage pick-off strip to the right of the
contact. Namely:

IToTRsAL )
V(XC) = V1 + ——'—2'———" \3.75)

Eq. (3.75) is exactly the same as Eq. (3.71) taking into account
that the direction of current flow is reversed. The AL is the differ-
ence in distance between the x = x. point and the location of the
voitage pick-off strip.

The incremental current flow through the contact at any point x
is given by:

I(x) = J(x)Zdx (3.76)
where J(x) is given by Eq. (3.72). The voltage at any point 0 < x < x¢

is the difference between V(x = 0) and the total IRg drops up to point
x. Therefore, analogously to Eq. (3.34):

X
Vix) = ¥(0) - [ 3(y)Z 75(x-y)dy (3.77)

Since V(0) is a constant, taking the derivative of both sides gives:

X
I R L (3.78)

Taking the derivative again gives:

SV . xR (3.79)

and using Eq. (3.72) gives:

FI) - Rgugen (- (3.80)

and this is the equation which must be solved for V(X). (If the
assumption is made, as used in the calculation of Ly, that J(x) is
given by a linear V(x)/R. term, then Eq. (3.36) results. )

The boundary conditions are determined from the fact that all
incremental dI{x)'s must add up to ItpT when x = xc. Therefore:
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X¢
OI J(y)dy = Iyt (3.81)

and using Eq. (3.78) gives the conditions:

ﬂgéﬁl = 0 (3. 82)
x =0
and
dav(x . Relpar (3.83)
X X = Xe z

The solution for V(x) is easily calculated assuming a form:

V(x) = A Infu(x)] (3.84)
with A a constant and u(x) of the form:

u(x) = Kcos vy x (3.85)

With the above assumptions, the solution is given by :

2E' GRgJg /2 o5 Y X

V(x) = —1In | ) (3.86)
q 2E! Y X

The parameter, y , depends on the boundary conditions as given in Eq.
(3.83) and is determined from:

qIT0TRs
vy tan (yx¢) = ——— @ (3.87)
2E'Z
where Z = contact width
xc = contact length
q = electronic charge

As a check on Eqs. (3.86) and (3.87) the limiting case of Rg » 0
can be examined. For R- + 0 , the IRy voltage drops go to zero and the
current crowding at the edge is reduced. In this case the dominant
voltage drop is V(x) across the contact itself and lateral current flow
does not have a large effect. The contact itself and lateral current
flow does not have a large effect. The contact [-V should tend to that
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for a contact with perpendicular current flow.

From Eq. (3.87), when Rg » 0 then y »+ 0 and therefore yx. » 0.

Therefore:
sin(yxc) * Yx¢ (3.88) 1
and j
cos(yxc) 1 (3.89)
and ;
i
tan(yxc) * Yx¢ (3.90) 1
substituting in E£q. (3.87) gives:
) qlTQTRs :
Y2%e = — (3.91)
2E'Z
or
- Tl 172
9lT10TRS /
Yy = —_— (3.92)
2E'xcZ

The voltage called the "contact voltage" in an experimental measurement
is V(xc). Therefore, substituting Egs. (3.92) and (3.89) in Eq. (3.86)
for V(xc) gives:

2E" Reds V2 2Erzx, M2
Vixg) = — In | (—) ) (3.93)
q i qIToTRC

or simplified and rearranged:

qV(x¢)
E|

Itor = Jds(Zxc) exp | - (3.94)

since Ix. is the contact area then, as expected, Eq. (3.94) is the I-V
equation for a MS diode with perpendicular current flow for biases
greater than a few kT/q.
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In using Eq. (3.86) and (3.87) in curve fitting, the terms of
Rgs Z, and x. were given data. Terms Z and x. were determined from
dimensional measurements and Rg was determined from the van der Pauw
measurement.

For an assumed value of E' and Jg, y was calculated using Eq.
(3.87) for a specified Itgr. Then, using y and Eq. (3.86), the
corresponding contact voltage, V(x.) , for that value of Itgr was cal-
culated. These steps were performed for a range of Itgr values and the
resulting Itgr vs. V(xc) response was compared to the experimental I-V
data. The initial assumptions of E' and Jg were then changed and the
procedure repeated until a good fit between theoretical and experi-
mental data was achieved.

In using the values of E' and Jg to find ¢g and Cg, the type of
emission, FE or TFE, needed to be determined. The value of E' was
first set equal to E, and Eq. (2.56) was used to find Ex . This meant
that the emission was initially assumed to be TFE. Using the resulting
value of Ew in Eq. (2.11) the doping level, Cg , (actually Np) was
calculated,

Using the calculated value of Cg, a value for the Fermi level,
nf, was calculated, Using these values of Ex and ng and using Eq.
(2.45), a value of f; was calculated. Since Eq. (2.25} :

1
— -0 > (2fy) V2 (2.25)
kT

must be satisfied in order for the emission to be FE, the calculated
value of f], was used to find Cymax for the given T from:

1

1/2
Cimax = —— - (2f1) /
kT

(3.95)

This value of CyMax was used in Eq. (2.44):

n(322)
g = —— (2.44)
2t

to determine a value of ¢gMax. Since the value of Jg is inversely pro-
portional to ¢g, use of ¢gMax in Eq. (2.41) to determine Jg under FE,
results in the minimum value of Jg, JSMIN’ which would be possible and
still have the emission be FE,




Using the value of E' obtained from the best fit, a value of tw
was calculated and Jg determined. If the value of Jg from the curve
fit is less than JgM[N, then a ¢ > ¢gMax 1S needed. However,
$8 > $BMAX results in ¢> ¢} X which violates Eq. (2.25) for the given
tw . Iherefore, if Jg from gﬁe curve fit is Tess than JSMIN as deter-
nined above, the emission cannot be FE.

If Jg from the curve fit is greater than Jg then a ¢p does
exist in the range that allows Eq. (2.25) to be sat%sfied and still fit
Jg and E, to the FE equation. In such a case, the value of Jg is used
in £Eq. (2.41) to determine a value of ¢g . This ¢g and the value of Cg
calculated before then represent the Schottky barrier conditions
necessary to result in the experimental I-V data for that particular
sanple.

The initial assumption of E' = Eo instead of E' = o causes no
problem in the above procedure, even though for the case where
Js > Jsypy 2 @nd the emission is FE, the E' actually represents Es and

not Eo. This is because, in the range where Eq. (2.25) is satisfied
and FE is indicated, the appropriate E, values, when put into Eq.
(2.56) result in E; » Ewx. Therefore, an initial assumption of E' = Eo,
instead of E' = Ex , causes no problem even if FE is indicated in

further calculation.

From some actual experimental data at room temperature, if the
above calculation indicates that the emission is FE, then the value of
Eo from Eq. (2.56) is equal to Ex well within 1%. Therefore, the
initial assumption of E' = E, instead of E' = E_ is only off by a very
small factor.

For the case where the above comparison of Jg and the calculated
Jsyry results in Jg < Jgyry » the emission is not FE and Eq. (2.41)
was not used. This meant %Nat the emission may be TFE. Using the same
values of E' = E,, and calculated values of o , nf , and Np, Eq.
(2.59) with V = 0 was used to calculate a ¢g to match the measured Jg
to the Jg expected under TFE.

To check whether the calculation for TFE was strictly valid, the
calculated values of E_, nf , and ¢g were used in Eq. (2.61). If Eq.
(2.61) was satisfied then the use of Eq. (2.59) was strictly valid. If
Eq. (2.61) was not satisfied then there is a combination of FE and TFE
occuring and the value of Jg as calculated using Eq. (2.59) is slightly
in error. :

3.5 Other measurements

In addition to an [-V measurement, there are two other types of
measurements which are commonly made to find ¢g, a C-V measurenment,
and a photoelectric measurement (9).
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The C-V technique measures the variation in space charge region
capacitance of a Schottky barrier with reverse bias voltage. A plot
of (1/c?) vs. Vg gives a line whose slope is related to doping, Cg, and
whose extrapolated intercept on the (1/c2) = 0 axis gives ¢Re

For this research the C-V technique was attempted but was
unsuccessful, The source of difficulty was the large tunneling
current, In a normal diode structure the only current flow under
reverse bias is due to leakage and saturation currents and is very
small. In this research, because Cg is large in order to realize
tunneling and give a low Rc, a large current flows under reverse bias
and the presence of this current appears as a large leakage resistance,
Most instruments cannot measure the variation in C when a large
effective leakage resistance is present and such was the case here,

The photoeiectric technique is used to measure the variation in
photo-generated current versus photon energy for a Schottky barrier
illuminated by a monochromatic light source. The mechanism involved is
the photoelectric excitation of an electron, at the Fermi level in the
metal, up over the Schottky barrier thereby contributing to current
flow.

The problem encountered when such measurements were tried on the
contact structures used in this research was that no detectable photo-
current was observed. The reason is that the relatively thick metal
layer does not allow the penetration of incident photons down to the
region next to the MS interface where they could excite electrons.
Electrons excited away from MS interface recombine before they can
reach the junction and therefore do not give rise to any 'measurable
photo current,

In addition to the problem of the thickness of the Au, the
relationship between photon energy and ¢g in the presence of electron
tunneling through a thin barrier is not well known. In the theory
usually used with the photoelectric technique it is assumed that the
photocurrent is due only to electrons emitted over the barrier. How-
ever, for this research, the contacts exhibited appreciable current
flow due to tunneling. Electrons excited thermally, as in TFE, or
photoelectrically would be expected to be able to tunnel in a similar
manner and therefore photoelectric current data for contacts in which
tunneling occurs may yield erroneous values of ¢g if the simple
emission theory is used.
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SECTION 1V

EXPERIMENTAL DATA

4,1 Diffusions

The GaAs starting substrates were obtained from Crystal
Specialities (64) and the manufacturer's specifications were:

p-type In doped

Carrier concentration 5 x 1016/cm3
Mobility 378.6 cm / V-sec
Orientation (100)
Resistivity 0.37 2 ¢cm

Wafer thickness 18 mils

One side polished

Small sections of each wafer were scribed out and cleaned with a
trichloroethylene, acetone, methanol, and H20 wash sequence., Ohmic
contacts were made to the periphery of the polished side by alloying
small dots of In-- 2% Zn alloy in an annealing furnance at 225° for 10
min, The I-V curve of the sample and contacts was observed on a curve
tracer to check for ohmicity.

Each main wafer was then retested to determine average
resistivity, p , carrier concentration, CR, and mobility, uy, with the
van der Pauw, Hall effect technique. Table 4.1 lists the results of
this measurement. The entries in Table 4,1 differ from the manufactur-
er's data but these measured values were taken to be the more valid
characterization of the starting wafers.

Before each diffusion, the wafers to be diffused were given a
standard wash and etch preparation as listed in Table 4.2. The MB etch
was reported to result in the least number of surface defects (21).

After cleaning, the Sn dopant solution was spun on the wafer
surface., As explained in Section II, the spin-on dopant solution was a
mixture of Sn bearing Tinsilicafilm and undoped Silicafilm. The pro-
portions of the two solutions were varied to give different values of

e A o _soan o




dopant surface concentration, After spin on, the film was densified
into a Sn bearing Si2 layer by hearing the wafer for 20 min to 1 hour
at 200°C in a furnace., A normal air atmosphere was present.

The dopant coated wafers were placed in a closed but not tightly
sealed capsule along with extra As and GaAs pieces. The diffusion was
at 950°C for 6 hours. An Ar flow was maintained in the diffusion
furnace. The arsenic released during the diffusion was kept out of the
room by means of a scavenger box located at the mouth of the furnace.
Figure 4.1 is a photograph of the diffusion furnace set up.




Table 4.1

GaAs Starting Substrate Specifications

Sample # p Q-cm x 10-! uy cmé/V-sec x 102 Cg/em? x 10'7 i
3A-1 1.65 1.937 1.95
4
4A-1 2.40 2.367 1.10 i-
5A-1 1.46 2.135 2.00 :
]
6A-1 1.44 2,220 1.96 ,
7A-1 1.46 2.155 1.98
8A-1 2,52 2.417 1.03
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Table 4.2

Wafer Preparation Process

1 min, wash in trichloroethylene in ultrasonic cleaner,
1 min. wash in acetone in ultrasonic cleaner,
1 min. wash in methanol in ultrasonic cleaner,
Rinse and soak in high purity (18 Mo-cm) H,0.
MB etch for 2 min.
1 HF ¢ 1 HCL : 4 H20 + 1 drop Hzoz/ 10 m1 of solution
Rinse in 18 M Q-cm HZO.

Blow dry with prepurified N2.

Store in petri dish,
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Table 4.3

Diffused Layer Data Determined from van der Pauw Measurements

Diffused X;

Sample # microns o Q-cm x 10~}  uy cm?/V-sec x 102 Cg/emd x 1048
4A-1 1.64 1.35 1.561 2.96
5A-1 1.37 1.31 1.431 3.33
6A-1 1.47 1.54 1.350 3.00
JA-1 1.02 2.46 1.365 1.87
8A-1 1.64 3.99 1.412 1.11
5-2 1.58 1.62 1,611 2.40
5-3 1.83 2.06 1.609 1.89
5-4 1.73 2.13 1.675 1.75
6-1 1.91 1.16 1.678 3.2t
6-2 1,68 1.77 1.631 2.16
6-3 1.67 2.33 1.709 1.57
6-4 1.44 1.78 1.482 2.37
6~5 1.09 2.09 1.937 1.54
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Figure 4.1 Pnotograph of the diffusion furnace eguipment.
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Pieces of the diffused wafers were hand lapped with 0.3 u
alumina powder on a glass plate and the junction was delineated using a
commercial staining solution (48) and exposure to light from a micro-
scope lamp. Junction depths, Xj, were then measured with a Watson
interferometer,

The n-type layers were then characterized with van der Pauw Hall
effect measurements, and values of layer average resistivity, o ,
average Hall mobility, uy , and average carrier concentration fp , were
determined. The results of the junction depth measurements and van der
Pauw measurements are given in Table 4.3.

Using the curve of p vs. Cg for full ionization, Figure 3.3, and
the values of p from the van der Pauw measurements, the value of Cg for
each sample can be determined. These values are listed in Table 4.4.

Cs can also be determined using the equation:

X
C(x) = Cgerfc

(4.1)
/Ot
if the diffusion coefficient, D, for Sn in GaAs at the diffusion
temperature is known. Assuming full ionization, when x = xj, then C(x)
= Cg. Therefore:
XJ
Cg = (5 erfc

(8.2)
2Dt

and Cg cam be determined.

The value of D for Sn in GaAs has been investigated by various
researchers and is usually given in the form:

Eo
D = D, exp(-—) (4.3)
kT
and Fane and Goss (66) gave data from which values of

Do

4.957 x 10-2 (4.4)
Eo

[}

2.725 eV (4.5)

can be calculated. These are also reported in Kendall (67) and Casey
(68). Kendall, gives a plot of Eq. (4.3) based on Fane and Goss's
data, but Casey, stating that his listed values are also from Fane and
Goss's work, nevertheless gives different values of D, and E,. Casey
gives values of:




Do 3.8 x 10-2 (4.6)

Eo

2.7 eV (4.7)

Goldstein and Keller (69), (also reported in Madelung (58) ), give:

Do 6 x 10-* cm?/sec (4.8)

Eo

2.5 eV (4.9)

valid over their experimental temperature range of 1069° C to 1215° C,
but possibly Eq. (4.3) can be extrapolated with their values down to
the temperature range less than 1069° C.

Tuck and Badawi (44) report that the diffusion coefficient
depends on the nature of the substrate, giving slightly different
values if the substrate is undoped or previously doped n-type. They do
not 